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Exercice 1. (a) Notons ⟨x, y⟩ = h(x, y), alors

∥αx + βy∥2 = ⟨αx + βy, αx + βy⟩
= αα⟨x, x⟩+ αβ⟨x, y⟩+ βα⟨y, x⟩+ ββ⟨y, y⟩
= αα⟨x, x⟩+ αβ⟨x, y⟩+ αβ⟨x, y⟩+ ββ⟨y, y⟩
= |α|2∥x∥2 + |β|2∥y∥2 + 2Re (αβ ⟨x, y⟩) .

(b) Rappelons que si h est une forme hermitienne, alors h(x, y) = h(y, x). On a donc
par définition g(x, y) = 1

2

(
h(x, y) + h(x, y)

)
= 1

2 (h(x, y) + h(y, x)), qui est clairement
symétrique.

De même ω(x, y) = 1
2i

(
h(x, y)− h(x, y)

)
= 1

2i
(h(x, y)− h(y, x)), qui est clairement

antisymétrique.

(c) Il est clair que g : V ×V → R est une forme bilinéaire sur l’espace vectoriel V (vu
comme espace vectoriel réel), qui est symétrique car

g(x, y) = Re (h(x, y)) = Re
(

h(y, x)
)

= Re (h(y, x)) = g(y, x).

Alors h est définie positive si et seulement si c’est le cas de g, puisque g(x, x) = h(x, x)
(car h(x, x) ∈ R).

Exercice 2. L’inégalité de Cauchy-Schwarz est la même pour un espace hermitien que
pour un espace euclidien. Soient x,y deux vecteurs d’un espaces vectoriel hermitien, alors

|⟨x, y⟩| ≤ ∥x∥∥y∥,

avec égalité si et seulement si x et y sont linéairement dépendant.

Pour démontrer cette inégalité, on suit l’indication. On pose α = ⟨x, y⟩ et β = −∥x∥2

et on calcule :

0 ≤ ∥αx + βy∥2 = |α|2∥x∥2 + |β|2∥y∥2 − 2Re (αβ ⟨x, y⟩)
= |⟨x, y⟩|2∥x∥2 + ∥y∥2∥x∥4 − 2|⟨x, y⟩|2∥x∥2

= ∥x∥2 (∥x∥2∥y∥2 − |⟨x, y⟩|2
)

.

Si x = 0, l’inégalité de Cauchy-Schwarz est triviale, dans le cas contraire le calcul pré-
cédent nous dit que ∥x∥2∥y∥2 − |⟨x, y⟩|2 > 0. De plus on a égalité si et seulement si
αx + βy = 0, donc si ces vecteurs sont linéairement dépendants.
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Exercice 3. (a) L’application ρ : Mn(C)→Mn(C) définie par ρ(A) = (A− A∗) est une
application R-linéaire. Donc son noyau est un sous-espace vectoriel réel de Mn(C), or
Hn = Ker(ρ) (on peut aussi vérifier directement que si A, B ∈ Hn, alors (A + B) ∈ Hn

et αA ∈Hn pour tout α ∈ R).

(b) Si A ∈ Hn, alors en général iA ̸∈ Hn, ici i =
√
−1. Par exemple la matrice

identité In est hermitienne, mais
√
−1In n’est pas hermitienne (on remarque d’ailleurs

que les coefficients diagonaux d’une matrice hermitienne sont des nombres réels).

(c) On a dimR(Hn) = n2. Pour le voir on peut par exemple observer que la partie réelle
d’une matrice hermitienne A ∈Hn est une matrice symétrique quelconque de Mn(R) et
la partie imaginaire de A est une matrice antisymétrique quelconque de Mn(R). On en
déduit un isomorphisme d’espaces vectoriel réels

Hn →Mn(R), A 7→ Re (A) + Im(A).
Il s’agit bien d’un isomorphisme, l’inverse est l’application

Mn(R)→Hn, A 7→ 1
2
(
A + A⊤) +

√
−1
2

(
A− A⊤) .

(d) On vérifie trivialement que les matrices σj ∈ H2 (pour j = 0, 1, 2, 3). Par le point
(c), on sait que dimR (H2) = 4, il suffit donc de vérifier que ces quatre matrices sont
linéairement indépendantes par rapport aux combinaisons linéaires réelles. Il est en effet
clair que si

3∑
j=0

αjσj =
(

α0 + α3 α1 + iα2
α1 − iα2 α0 − α3

)
=

(
0 0
0 0

)
,

alors α0 = α1 = α2 = α3 = 0.

Exercice 4. (a) Rappelons que A = (aij) est la matrice de T dans la base {e1, . . . , en}
si et seulement si Tej =

∑n
i=1 aijei. Lorsque cette base est orthonormée (unitaire), on a

donc aij = ⟨ei, T ej⟩. Notons B = (bij) la matrice de T ∗, alors
bij = ⟨ei, T ∗ej⟩ = ⟨Tei, ej⟩ = ⟨ej, T ei, ⟩ = aji.

On a donc montrée que B = A
⊤ .

(b) Le point (a) nous apprend que le polynôme caractéristique de l’adjoint T ∗ est
χ

T ∗ (t) = χ
A

⊤ (t) = χ
A
(t),

c’est donc le polynôme dont les coefficients sont les conjugués complexes du polynôme
χ

A
(t) = χ

T
(t).

Par conséquent
χ

T
(λ) = 0 ←→ χ

T ∗ (λ) = 0.
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Exercice 5. (a) Supposons que T est normal, alors

⟨Tx, Ty⟩ = ⟨x, T ∗Ty⟩ = ⟨x, TT ∗y⟩ = ⟨T ∗x, T ∗y⟩.

Réciproquement, supposons que ⟨Tx, Ty⟩ = ⟨T ∗x, T ∗y⟩ pour tous x, y ∈ V . Alors on a
par le calcul ci-dessus ⟨x, T ∗Ty⟩ = ⟨x, TT ∗y⟩ pour tous x, y ∈ V . Mais ceci n’est possible
que si TT ∗ = T ∗T .

(b) On a d’une part

(T + S∗)(T ∗ + S) = TT ∗ + TS + S∗T ∗ + S∗S,

et d’autre part
(T ∗ + S)(T + S∗) = T ∗T + T ∗S∗ + ST + SS∗.

Or on a supposé que T et S sont normaux, donc T ∗T = TT ∗ et S∗S = SS∗, et que
ST = TS. On a donc aussi T ∗S∗ = S∗T ∗ (car T ∗S∗ = (ST )∗ = (TS)∗ = S∗T ∗). On
conclut que

(T + S∗)(T ∗ + S) = (T ∗ + S)(T + S∗),

et donc (T + S∗) est un opérateur normal.

(c) Si on pose S = λIV , alors S∗ = λIV et S est clairement normal. De plus TS = ST ,
donc par l’exercice précédent on sait que (T − λIV ) est normal. En utilisant le point (a)
on a donc pour tout vecteur non nul v ∈ V ,

Tv = λv ⇔ ∥(T − λIV )v∥ = 0
⇔ ∥(T − λIV )∗v∥ = 0
⇔ ∥(T ∗ − λIV )v∥ = 0
⇔ T ∗v = λv.

Donc v est un vecteur propre de T pour la valeur propre λ si et seulement si v est (aussi)
un vecteur propre de T ∗ pour la valeur propre λ.

(d) Supposons que Tv = λv et Tw = µw avec µ ̸= λ. Alors d’après le point précédent
on sait que T ∗v = λv. On a donc

µ⟨v, w⟩ = ⟨v, Tw⟩ = ⟨T ∗v, w⟩ = ⟨λv, w⟩ = λ⟨v, w⟩.

Ainsi (λ− µ)⟨v, w⟩ = 0, et puisque µ ̸= λ on conclut que ⟨v, w⟩ = 0.
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Exercice 6. (a) La matrice A est normale si et seulement si A∗A = AA∗. On a A∗ =(
a c

b d

)
et donc

AA∗ =
(

aa + bb ac + bd

ac + bd cc + dd

)
A∗A =

(
aa + cc a b + cd

ab + cd bb + dd

)
On a donc A∗A = AA∗ si et seulement si

|b| = |c| et ac + bd = a b + cd.

La deuxième condition peut aussi s’écrire : b(a− d) = c(a− d).

(b) La réponse est négative. Les matrices
(

0 1
1 0

)
et

(
0 −1
1 0

)
sont normales par le

point (a), mais on vérifie facilement que la somme
(

0 2
0 0

)
n’est pas une matrice normale.

Exercice 7. (a) Si x ∈ Im(T ), alors il existe z ∈ V tel que x = Tz. Alors pour tout
y ∈ Ker(T ∗), on a

⟨x, y⟩ = ⟨Tz, y⟩ = ⟨z, T ∗y⟩ = 0.

Par conséquent x ∈ Ker(T ∗)⊥, on a donc montré que Im(T ) ⊂ Ker(T ∗)⊥. Pour montrer
qu’on a égalité, il suffit maintenant de raisonner sur la dimension :

dim(Im(T )) = rang(T ) = rang(T ∗) = dim(V )− dim Ker(T ∗) = dim
(
Ker(T ∗)⊥) .

(b) L’hypothèse est que Tw ∈ W pour tout w ∈ W . Soit v ∈ W ⊥, alors pour tout
w ∈ W on a

⟨T ∗v, w⟩ = ⟨v, Tw⟩ = 0,

car Tw ∈ W . Donc T ∗v ∈ W ⊥. Comme v ∈ W ⊥, est quelconque, cela montre que
T ∗ (W ⊥) ⊂ W ⊥.

Exercice 8. (a) Appliquer la formule de polarisation à la forme quadratique Q(x) =
∥Ux∥2 = ⟨Ux, Ux⟩.

(b) Si U est unitaire, alors

⟨x, U∗Uy⟩ = ⟨Ux, Uy⟩ = ⟨x, y⟩

pour tous x, y ∈ V . Donc U∗U = I.
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(c) Par le point (b) on sait que U∗ = U−1, donc U∗U = U−1U = I = UU−1 = UU∗.

(d) Supposons que Ux = λx avec x ∈ V \ {0}. Si U est unitaire, alors

∥x∥ = ∥Ux∥ = ∥λx∥ = |λ|∥x∥.

Donc |λ| = 1.

(e) Puisque U est normal, on peut appliquer le théorème spectral. Les valeurs propres
de U vérifient |λ| = 1 et donc elle s’écrivent eiθ.
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